EFFICACY OF LASER PULSE FREQUENCIES ON BLOOD FLOW IN TYPE 2 DIABETIC PATIENTS

*1Amir Nazih Wadee, Ph. D. P. T.

ABSTRACT

Background: Research reports had noted an apparent increase in cutaneous and deep blood flow as a result of low-intensity laser therapy (LLLT) in normal subjects. The purpose of the study was to investigate the effective laser pulse frequency either (200 or 2000 Hz) on improving blood flow in type 2 diabetic patients. Forty-five diabetic patients selected from out clinic of Kasr El-Aini Hospital, Cairo University assigned randomly into three groups. The blood flow volume, blood flow velocity and caliper of the blood vessel were evaluated before laser application and after twelve sessions using duplex Doppler ultrasound.

Methods: Combined He-Ne and infrared LILT was administered three times a week for twelve sessions at intensity of 3 J, power 500 mW, 808 nm duration 15 min and pulse frequency 200 Hz for group I, 2000 Hz for group II, and sham LILT for group III on the sural artery at posterior aspect of dominant leg.

Result: Paired t-test revealed that low pulse frequency (200 Hz) LILT produced significant improvement in blood flow volume and blood flow velocity (t= 1.76, p= 0.001 and t= 2.8, p= 0.01) respectively (P<0.05). While there was no significant changes in caliper of the blood vessel of group I, blood flow volume, blood flow velocity or caliper of the blood vessel of group II and group III (t= 2.15, p= 1, t= 2.15, p= 1, t= 1.11 p= 0.31, t= 1.54, p= 0.15, t= 2.51, p= 1, t= 1.21 p= 0.33, t= 1.45, p= 0.15) respectively (P<0.05). ANOVA test in between groups revealed insignificant changes in all pre and post- measures except significant results in blood flow volume and velocity which indicating the superiority of group I on both group II and III by post hoc test.

Conclusion: low pulse frequency of LILT (200 Hz) could improve blood flow than high pulse frequency (2000 Hz).

Keywords: laser, blood flow volume, blood flow velocity, blood vessel caliper.

Received 02nd January 2017, revised 15th March 2017, accepted 02nd April 2016

10.15621/ijphy/2017/v4i2/141953

CORRESPONDING AUTHOR

*1Amir Nazih Wadee, Ph. D. P. T.

Department of Basic Science for Physical Therapy, Faculty of Physical Therapy, Cairo University.
INTRODUCTION

The purpose of the current study was to investigate the effective laser pulse frequency either low or high pulse frequency (200 or 2000 Hz) on improving blood flow in type 2 diabetic patients. Laser means light amplification by stimulated emission of radiation. The uses of lasers are numerous and widespread nearly in each field of human attempt in treatment, science, and technology [1-3]. Some practical and research works had reported evident increment in cutaneous and profound blood stream subsequently of laser (combined He-Ne and infrared laser) radiation or recommended such putative laser-mediated alteration in blood flow as a mechanism of action for some other clinical or physiological impact. It was accounted for that low-intensity laser therapy (LILT) enhanced local microcirculation and it could likewise enhance oxygen supply to hypoxic cells, and in the meantime, it could evacuate the accumulated waste products (3). But there was a gap found in the literature upon the impact of LILT on blood stream and furthermore, inconsistency and conflicting outcomes on the detailed reviews because the exact mechanism was obscure, the powerful parameters were not built up, and variable consequences for various blood flow estimations were not concluded [4]. Diabetes mellitus influences roughly 100 million people worldwide. 5%-10% have type I (insulin-dependent) and 90% to 95% have type II (non-insulin-dependent) diabetes mellitus; its macrovascular appearances incorporate atherosclerosis and angiopathy. The microvascular consequences, retinopathy, and nephropathy are real reasons for visual deficiency and renal failure [5,6].

LILT might enhance microcirculation locally that enhance wound healing, promote oxygen supply to hypoxic cells that improve the metabolic functions of these cells, increment number of white blood cells and antibodies that decline inflammation [7], and in the meantime it could remove the accumulated waste products that diminishing muscle spasm [8, 9], likewise the normalization of the microcirculation might occur because of laser applications and interfere with the “vicious circle” of pain [9]. LILT might enhance the elasticity of blood vessels without influencing their caliber that improve its accommodation to more blood, which cut the endless loop of pain and influencing the local veins by suction drive thus increment venous return [10-12]. Scientists proposed that the physiological reactions to laser were influenced by its pulse frequency which was one of its parameters that ought to be adjusted the distinctions however in a change in blood flow by pulse frequency were not clear yet [13-15]. So physiotherapists were still in need to examine and affirm the changes in blood flow after laser application that might guide them to construct the effective parameters of the laser so as to gain the most earlier and beneficial results. So, was there a difference in the effect of laser pulse frequency either (200 or 2000 Hz) on improving blood flow in type 2 diabetic patients?

The design of the study: was controlled randomized trial of pre-test post-test control group experimental design.

This study was ethically approved by the ethical committee of Faculty of Physical Therapy, Cairo University, and was conducted in the period from January to May 2016. The laser application was conducted in the out clinic of the faculty. The measurements were performed in the diagnostic unit of Kasr El-Aini hospital.

Subjects, materials, and methods:

Forty-five diabetic patients (type 2) with well controlled blood-sugar level for six months before the study. They didn’t complain from any vascular or blood disease. Patients selected from out clinic of Kasr El-Aini Hospital, Cairo University. Their average age is from 42 to 52 years old with mean age (46.92 ± 1.5) years, height ranged from (165-174) cm with mean height (174.1 ± 3.23) cm, and weight ranged from (62-80) kg with mean weight (72.09 ± 6.79) kg. Subjects were randomly assigned into three groups I, II and III.

Group I: fifteen patients had received twelve sessions, every other day; of LILT (combined He-Ne and infrared laser with scanner technique) its intensity was 3 J, power 500 mW, 808 nm duration 15 min and pulse frequency was 200 Hz.

Group II: fifteen patients had received the same, but pulse frequency was 200 Hz.

Group III: control group had received sham LILT.

The blood flow volume, blood flow velocity, and caliper of the sural artery of both lower limbs (The dependent lower limb was expressed as the experimental limb) were measured using duplex Doppler ultrasound before and after laser application. The subjects were instructed to maintain their normal daily activities and not to engage in any other exercise-training program during the study.

Instrumentations:

1. LILT: ASA Laser Comby 3 Terza Serie. ASA s.r.l. – Via A. Volta, 9 – 36057 ARCUGNANO (VI) – ITALIA.

PROCEDURES

Blood flow measurement procedures: The transducer head of the duplex Doppler ultrasound was positioned vertically on the posterior aspect of the leg after application of sufficient amount of sono-gel. The procedures were then completed by the same radiology specialist to register the blood flow volume, blood flow velocity and the caliper of the sural artery.

LILT application procedures: Each subject was positioned in modified prone lying, fully relaxed and supported; alcohol washed the area of laser application in the dominant leg. The laser scanner was applied perpendicular on the faculty. The measurements were performed in the diagnostic unit of Kasr El-Aini hospital.
experimental group, either 200 Hz in group I, 2000 Hz in group II or sham LILT in group III. Patients and researcher wear the protective goggles during LILT application. The patients were permitted to have ten minutes rest after laser application. These procedures were repeated for twelve sessions, three sessions per week. Post-test measurement of the blood flow volume, blood flow velocity, and caliper of the sural artery was performed at the end of the last session.

RESULTS

Descriptive statistics (mean and standard deviation) were performed for all measurements. Paired t-test was performed to assess the significance between the pre-test and post-test measures within each group. ANOVA test was performed to evaluate the significance in between groups. Finally, post hoc test was used only when there were significant differences in between groups to test the superiority of one group over the other. The level of significance was 0.05.

I. Effect of LILT pulse frequencies on blood flow volume:

1. **Group I (200 Hz):** t-test revealed that the mean values of blood flow volume were increased from (2.9 ± 1.51) m.L/min at pre-test to (5.6 ± 1.12) m.L/min at the end of twelve sessions. These changes were significant (t= 1.76 and p= 0.001).

2. **Group II (2000 Hz):** t-test revealed that the mean values of blood flow volume changed from (4.7 ± 1.81) m.L/min at pre-test to (4.7 ± 1.07) m.L/min at the end of twelve sessions. These changes were insignificant (t= 2.15 and p= 1).

3. **Group III (sham LILT):** t-test revealed that the mean values of blood flow volume changed from (4.49 ± 1.6) m.L/min at pre-test to (4.5 ± 1.23) m.L/min at the end of twelve sessions. These changes were significant (t= 2.51 and p= 1) as shown in the table (1) and figure (1).

<table>
<thead>
<tr>
<th>Measuring variable</th>
<th>Group</th>
<th>Variables</th>
<th>Blood flow volume (Mean ± S.D.) m.L/min</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood flow volume changes</td>
<td>group I</td>
<td>Pre-test</td>
<td>2.9 ± 1.51</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>5.6 ± 1.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>group II</td>
<td>Pre-test</td>
<td>4.7 ± 1.81</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>4.7 ± 1.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>group III</td>
<td>Pre-test</td>
<td>4.49 ± 1.6</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>4.5 ± 1.23</td>
<td></td>
</tr>
</tbody>
</table>

*significant

Figure 1: Blood flow volume changes

II. Effect of LILT pulse frequencies on blood flow velocity

1. **Group I (200 Hz):** t-test revealed that the mean values of blood flow velocity were decreased from (5.02 ± 2.87) cm/sec at pre-test to (7.06 ± 2.05) cm/sec at the end of twelve sessions. These changes were significant (t= 2.8 and p= 0.01).

2. **Group II (2000 Hz):** t-test revealed that the mean values of blood flow velocity changed from (4.42 ± 2.89) cm/sec at pre-test to (3.55 ± 2.65) cm/sec at the end of twelve sessions. These changes were insignificant (t= 1.11 and p= 0.31).

3. **Group III (sham LILT):** t-test revealed that the mean values of blood flow velocity changed from (3.66 ± 1.02) cm/sec at pre-test to (4.21 ± 1.01) cm/sec at the end of twelve sessions. These changes were insignificant (t= 1.21 and p= 0.33) as shown in the table (2) and figure (2).

Table 2: Blood flow velocity changes

<table>
<thead>
<tr>
<th>Measuring variable</th>
<th>Group</th>
<th>Variables</th>
<th>Blood flow velocity (Mean ± S.D) cm/sec</th>
<th>t-test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood flow velocity changes</td>
<td>group I</td>
<td>Pre-test</td>
<td>5.02 ± 2.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>7.06 ± 2.05</td>
<td>2.8</td>
<td>0.01*</td>
</tr>
<tr>
<td></td>
<td>group II</td>
<td>Pre-test</td>
<td>4.42 ± 2.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>3.55 ± 2.65</td>
<td>1.11</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>group III</td>
<td>Pre-test</td>
<td>3.66 ± 1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>4.21 ± 1.01</td>
<td>1.21</td>
<td>0.33</td>
</tr>
</tbody>
</table>

*significant

Figure 2: Blood flow velocity changes

III. Effect of LILT pulse frequencies on caliper of the blood vessel

1. **Group I (200 Hz):** t-test revealed that the mean values of caliper of the blood vessel changed from (1.49 ± 0.29) mm at pre-test to (1.49 ± 0.28) mm at the end of twelve sessions. These changes were insignificant (t= 2.15 and p= 1).

2. **Group II (2000 Hz):** t-test revealed that the mean values of the caliper of blood vessel changed from (1.51 ± 0.26) mm at pre-test to (1.39 ± 0.15) mm at the end of twelve sessions. These changes were insignificant (t= 1.54 and p=0.15).

3. **Group III (sham LILT):** t-test revealed that the mean values of the caliper of blood vessel changed from (1.82 ± 0.32) mm at pre-test to (1.49 ± 0.29) mm at the end of twelve sessions. These changes were significant (t= 3.45 and p=0.02) as shown in the figure (3).
± 0.03) mm at pre-test to (1.41 ± 0.04) mm at the end of twelve sessions. These changes were insignificant (t= 1.45 and p=0.15) as shown in the table (3) and figure (3).

<table>
<thead>
<tr>
<th>Measuring variable</th>
<th>Group</th>
<th>Variables</th>
<th>Blood flow volume (Mean ± S.D) mm</th>
<th>t-value</th>
<th>P- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood vessel caliper changes</td>
<td>group I</td>
<td>Pre-test</td>
<td>1.49 ± 0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>1.49 ± 0.28</td>
<td>2.15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>group II</td>
<td>Pre-test</td>
<td>1.51 ± 0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>1.39 ± 0.15</td>
<td>1.54</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>group III</td>
<td>Pre-test</td>
<td>1.82 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-test</td>
<td>1.41 ± 0.04</td>
<td>1.45</td>
<td>0.15</td>
</tr>
</tbody>
</table>

![Figure 3: Changes of the blood vessel caliper](image)

Table 3: Blood vessel caliper

Table 4: ANOVA and Post hoc tests for blood flow volume

Table 5: ANOVA and Post hoc tests for blood flow velocity

Table 6: ANOVA and Post hoc tests for blood flow velocity

DISCUSSION

Within the limitation of the current study, it appeared that the low pulse frequency (200 Hz) produced significant increase (P<0.05) in the blood flow volume (t= 1.76, p= 0.001). Gorgey et al. [15] had accounted for that laser application for brief impulses duration emitted in slow recurrences (low pulse frequency) could in reality deposit high quantities of energy without harming tissues, in addition, Stadler et al, 2000 [16] concluded that LILT produced a more profound natural response than long impulses discharged at short repeats (high pulse frequency) and Lins et al., 2010 [17] who said that low pulse frequency had delivered an impact which was near consistent emission. These results had a concurrence with Stadler et al., 2000 [16] who had noticed that the blood stream was significantly increased (0.09 ± 0.006) after laser application. Likewise, Gao and Xing, 2009 [18] reasoned that utilization of LILT (30J/cm2, 30 mW, for 20 min) would bring skin temperature up in patients with diabetic microangiopathy that showed a change in cutaneous microcirculation. Also, Kreisler et al., 2002 and Chen et al., 2008 [19,20] found that laser radiation had positively affected the microcirculation of subjects with Raynold's disorder. However, Schindl et al., 2003 and Pepłow et al., 2011 [21,22] decided that it was hard to give an exact physio-pathological explanation of their outcomes. Also, Desilva et al., 2010 and Peplow et al., 2010 [23,24] proposed this accompanying theory to clarify the outcomes: A myolytic activity of laser beam on the blood vessels and notwithstanding an increased cyclic adenosine monophosphate in the vessel wall. Hopf and Rollin, 2007 and Minatel et al., 2009 [25,26] were adding the reflex activity interceded via the autonomic nervous system. Also, they believed an interference with some chemical mediators responsible for the control of vessel tone. On the same side, it was recorded by Leaper, 2007 and Krug, 2007 [27,28] that LILT incremented the number of dermal vessels through a video measuring system...
for chronic ulcers. Sun et al. saw it., 2005 and Ring, 2010 [29,30] that the quantity of vessels was roughly twice that of control gathering which showed a change in local blood flow in trans-myocardial laser revascularization. In concurrence with the present study, Sobanko and Alster 2008 [31] concentrated the impact of LILT on the procedure of new formation of blood vessels during recovery in the gastrocnemius muscle utilizing histomorphometric techniques. Also, Stcker et al., 2001 [32] subjected the injured zone to four direct He-Ne laser irradiations (6 mW for 2.3 min) day after day. This review did not compare between various laser parameters and furthermore, was dependent on counting the volume thickness of vessels and not on direct measurement strategy of blood stream as Doppler. Niu et al., 2001, Wright et al., 2006 and Kolodyzhnyi et al., 2011 [33–35] uncovered the angiogenesis to different chemotactic and growth factors, specifically fibroblast growth factors, lactic acid, biogenic amines. Otah et al., 2005 and Stasinopoulos and Johnson, 2005 [36, 37] suggested that endothelial cell migration was more imperative than expansion in angiogenesis, so that chemo-attraktants, for example, fibronectin, heparin, and platelets-derived variables would assume a noteworthy part in angiogenesis after laser application.

Within the limitation of the present study, doubtlessly the low pulse frequency (200 Hz) LILT delivered significantly increased the blood flow velocity (t = 2.8, p = 0.01). Additionally, these findings affirmed the work by Rabelo et al., 2006 [38] on the in-vitro impact of low-level laser radiation (LLLR) on chose rheologic constants of the human blood that was examined. The varieties of complete blood counting (CBC) parameters to the received dose were resolved, as well as of blood viscosity (an erythrocyte aggregation index), as an exploration technique for some auxiliary modification of blood proteins. This was additionally affirmed by Albertini et al., 2007 [39] who performed the electrophoretic investigation of plasma proteins from the irradiated blood. Furthermore, Dall et al., 2009 [40] studied the impact of LILT on red blood cells and affirmed the non-resonant mechanism of this stimulating effect, by the progresses happening in the cell membrane, by renewing of red cells functional capacities and by several biochemical impacts at the membrane’s level. This diminished the blood viscosity and in turn increased blood flow velocity. Finally, the low pulse frequency that was incorporated into the plan of the present review (200 Hz) produced a non-significant difference (P > 0.05) in the caliper of the blood vessel. These discoveries affirmed what was discussed by Wigington et al., 2004 [14] that laser irradiation had no impact on the vasomarity of veins, arteries and lymphatic vessels in type 2 diabetic patients.

CONCLUSION

LILT with low pulse frequency could enhance blood flow in type 2 diabetic patients while high pulse frequency could not influence blood flow.

REFERENCES

